Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573776

RESUMO

Diagnostic challenges continue to impede development of effective therapies for successful management of alcohol-associated hepatitis (AH), thus creating an unmet need to identify and develop non-invasive biomarkers for AH. In murine models of ethanol-induced liver injury, complement activation contributes to hepatic inflammation and injury. Therefore, we hypothesized that complement proteins could be rational diagnostic/prognostic biomarkers in AH. Here, we performed a comparative analysis of data derived from the human hepatic and serum proteome to identify and characterize complement protein signatures in severe AH (sAH). The quantity of multiple complement proteins was perturbed in liver and serum proteome of patients with sAH. Multiple complement proteins differentiated patients with sAH from those with alcohol cirrhosis (AC), alcohol use disorder (AUD) and healthy controls (HCs). Notably, serum collectin 11 and C1q binding protein were strongly associated with sAH and exhibited good discriminatory performance amongst patients with sAH, AC, AUD, and HCs. Furthermore, complement component receptor 1-like protein (CR1L) was negatively associated with pro-inflammatory cytokines. Additionally, lower serum mannose-binding lectin associated serine protease 1 and coagulation factor II were associated with and independently predicted 90-day mortality. In summary, meta-analysis of proteomic profiles from liver and circulation revealed complement protein signatures of sAH, highlighting a complex perturbation of complement and identifying potential diagnostic and prognostic biomarkers for patients with sAH.

2.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437061

RESUMO

BACKGROUND: Alcohol-associated hepatitis (AH) is one of the clinical presentations of alcohol-associated liver disease. AH has poor prognosis, and corticosteroids remain the mainstay of drug therapy. However, ~40% of patients do not respond to this treatment, and the mechanisms underlying the altered response to corticosteroids are not understood. The current study aimed to identify changes in hepatic protein expression associated with responsiveness to corticosteroids and prognosis in patients with AH. METHODS: Patients with AH were enrolled based on the National Institute on Alcohol Abuse and Alcoholism inclusion criteria for acute AH and further confirmed by a diagnostic liver biopsy. Proteomic analysis was conducted on liver samples acquired from patients with AH grouped as nonresponders (AH-NR, n = 7) and responders (AH-R, n = 14) to corticosteroids, and nonalcohol-associated liver disease controls (n = 10). The definition of responders was based on the clinical prognostic model, the Lille Score, where a score < 0.45 classified patients as AH-R and a score > 0.45 as AH-NR. Primary outcomes used to assess steroid response were Lille Score (eg, improved liver function) and survival at 24 weeks. RESULTS: Reduced levels of the glucocorticoid receptor and its transcriptional co-activator, glucocorticoid modulatory element-binding protein 2, were observed in the hepatic proteome of AH-NR versus AH-R. The corticosteroid metabolizing enzyme, 11-beta-hydroxysteroid dehydrogenase 1, was increased in AH-NR versus AH-R along with elevated mitochondrial DNA repair enzymes, while several proteins of the heat shock pathway were reduced. Analysis of differentially expressed proteins in AH-NR who survived 24 weeks relative to AH-NR nonsurvivors revealed several protein expression changes, including increased levels of acute phase proteins, elevated coagulation factors, and reduced mast cell markers. CONCLUSIONS: This study identified hepatic proteomic changes that may predict responsiveness to corticosteroids and mortality in patients with AH.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Humanos , Proteínas de Choque Térmico , Glucocorticoides/uso terapêutico , Proteômica , Esteroides , Hepatite Alcoólica/diagnóstico , Hepatite Alcoólica/tratamento farmacológico
3.
PLOS Digit Health ; 3(2): e0000447, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335183

RESUMO

Distinguishing between alcohol-associated hepatitis (AH) and alcohol-associated cirrhosis (AC) remains a diagnostic challenge. In this study, we used machine learning with transcriptomics and proteomics data from liver tissue and peripheral mononuclear blood cells (PBMCs) to classify patients with alcohol-associated liver disease. The conditions in the study were AH, AC, and healthy controls. We processed 98 PBMC RNAseq samples, 55 PBMC proteomic samples, 48 liver RNAseq samples, and 53 liver proteomic samples. First, we built separate classification and feature selection pipelines for transcriptomics and proteomics data. The liver tissue models were validated in independent liver tissue datasets. Next, we built integrated gene and protein expression models that allowed us to identify combined gene-protein biomarker panels. For liver tissue, we attained 90% nested-cross validation accuracy in our dataset and 82% accuracy in the independent validation dataset using transcriptomic data. We attained 100% nested-cross validation accuracy in our dataset and 61% accuracy in the independent validation dataset using proteomic data. For PBMCs, we attained 83% and 89% accuracy with transcriptomic and proteomic data, respectively. The integration of the two data types resulted in improved classification accuracy for PBMCs, but not liver tissue. We also identified the following gene-protein matches within the gene-protein biomarker panels: CLEC4M-CLC4M, GSTA1-GSTA2 for liver tissue and SELENBP1-SBP1 for PBMCs. In this study, machine learning models had high classification accuracy for both transcriptomics and proteomics data, across liver tissue and PBMCs. The integration of transcriptomics and proteomics into a multi-omics model yielded improvement in classification accuracy for the PBMC data. The set of integrated gene-protein biomarkers for PBMCs show promise toward developing a liquid biopsy for alcohol-associated liver disease.

4.
Mol Cell Proteomics ; 22(8): 100592, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328065

RESUMO

The need for a clinically accessible method with the ability to match protein activity within heterogeneous tissues is currently unmet by existing technologies. Our proteomics sample preparation platform, named microPOTS (Microdroplet Processing in One pot for Trace Samples), can be used to measure relative protein abundance in micron-scale samples alongside the spatial location of each measurement, thereby tying biologically interesting proteins and pathways to distinct regions. However, given the smaller pixel/voxel number and amount of tissue measured, standard mass spectrometric analysis pipelines have proven inadequate. Here we describe how existing computational approaches can be adapted to focus on the specific biological questions asked in spatial proteomics experiments. We apply this approach to present an unbiased characterization of the human islet microenvironment comprising the entire complex array of cell types involved while maintaining spatial information and the degree of the islet's sphere of influence. We identify specific functional activity unique to the pancreatic islet cells and demonstrate how far their signature can be detected in the adjacent tissue. Our results show that we can distinguish pancreatic islet cells from the neighboring exocrine tissue environment, recapitulate known biological functions of islet cells, and identify a spatial gradient in the expression of RNA processing proteins within the islet microenvironment.


Assuntos
Ilhotas Pancreáticas , Proteoma , Humanos , Proteoma/metabolismo , Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas
5.
Nat Microbiol ; 8(3): 548-561, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690861

RESUMO

Bacterial phosphosignalling has been synonymous with two-component systems and their histidine kinases, but many bacteria, including Mycobacterium tuberculosis (Mtb), also code for Ser/Thr protein kinases (STPKs). STPKs are the main phosphosignalling enzymes in eukaryotes but the full extent of phosphorylation on protein Ser/Thr and Tyr (O-phosphorylation) in bacteria is untested. Here we explored the global signalling capacity of the STPKs in Mtb using a panel of STPK loss-of-function and overexpression strains combined with mass spectrometry-based phosphoproteomics. A deep phosphoproteome with >14,000 unique phosphosites shows that O-phosphorylation in Mtb is a vastly underexplored protein modification that affects >80% of the proteome and extensively interfaces with the transcriptional machinery. Mtb O-phosphorylation gives rise to an expansive, distributed and cooperative network of a complexity that has not previously been seen in bacteria and that is on par with eukaryotic phosphosignalling networks. A resource of >3,700 high-confidence direct substrate-STPK interactions and their transcriptional effects provides signalling context for >80% of Mtb proteins and allows the prediction and assembly of signalling pathways for mycobacterial physiology.


Assuntos
Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinases , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteoma
6.
Hepatology ; 77(3): 902-919, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35689613

RESUMO

BACKGROUND AND AIMS: Mixed lineage kinase domain-like pseudokinase (MLKL), a key terminal effector of necroptosis, also plays a role in intracellular vesicle trafficking that is critical for regulating liver inflammation and injury in alcohol-associated liver disease (ALD). Although receptor interacting protein kinase 3 (Rip3)-/- mice are completely protected from ethanol-induced liver injury, Mlkl-/- mice are only partially protected. Therefore, we hypothesized that cell-specific functions of MLKL may contribute to ethanol-induced injury. APPROACH AND RESULTS: Bone marrow transplants between Mlkl-/- mice and littermates were conducted to distinguish the role of myeloid versus nonmyeloid Mlkl in the Gao-binge model of ALD. Ethanol-induced hepatic injury, steatosis, and inflammation were exacerbated in Mlkl-/- →wild-type (WT) mice, whereas Mlkl deficiency in nonmyeloid cells (WT→ Mlkl-/- ) had no effect on Gao-binge ethanol-induced injury. Importantly, Mlkl deficiency in myeloid cells exacerbated ethanol-mediated bacterial burden and accumulation of immune cells in livers. Mechanistically, challenging macrophages with lipopolysaccharide (LPS) induced signal transducer and activator of transcription 1-mediated expression and phosphorylation of MLKL, as well as translocation and oligomerization of MLKL to intracellular compartments, including phagosomes and lysosomes but not plasma membrane. Importantly, pharmacological or genetic inhibition of MLKL suppressed the phagocytic capability of primary mouse Kupffer cells (KCs) at baseline and in response to LPS with/without ethanol as well as peripheral monocytes isolated from both healthy controls and patients with alcohol-associated hepatitis. Further, in vivo studies revealed that KCs of Mlkl-/- mice phagocytosed fewer bioparticles than KCs of WT mice. CONCLUSION: Together, these data indicate that myeloid MLKL restricts ethanol-induced liver inflammation and injury by regulating hepatic immune cell homeostasis and macrophage phagocytosis.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Camundongos , Animais , Lipopolissacarídeos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/toxicidade , Hepatite Alcoólica/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Fagocitose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
7.
Mol Cell Proteomics ; 21(12): 100426, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244662

RESUMO

Despite their diminutive size, islets of Langerhans play a large role in maintaining systemic energy balance in the body. New technologies have enabled us to go from studying the whole pancreas to isolated whole islets, to partial islet sections, and now to islet substructures isolated from within the islet. Using a microfluidic nanodroplet-based proteomics platform coupled with laser capture microdissection and field asymmetric waveform ion mobility spectrometry, we present an in-depth investigation of protein profiles specific to features within the islet. These features include the islet-acinar interface vascular tissue, inner islet vasculature, isolated endocrine cells, whole islet with vasculature, and acinar tissue from around the islet. Compared to interface vasculature, unique protein signatures observed in the inner vasculature indicate increased innervation and intra-islet neuron-like crosstalk. We also demonstrate the utility of these data for identifying localized structure-specific drug-target interactions using existing protein/drug binding databases.


Assuntos
Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo , Proteômica/métodos , Proteínas/metabolismo , Microdissecção e Captura a Laser
8.
Am J Pathol ; 192(12): 1658-1669, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243044

RESUMO

Alcohol-associated hepatitis (AH) is a form of liver failure with high short-term mortality. Recent studies have shown that defective function of hepatocyte nuclear factor 4 alpha (HNF4a) and systemic inflammation are major disease drivers of AH. Plasma biomarkers of hepatocyte function could be useful for diagnostic and prognostic purposes. Herein, an integrative analysis of hepatic RNA sequencing and liquid chromatography-tandem mass spectrometry was performed to identify plasma protein signatures for patients with mild and severe AH. Alcohol-related liver disease cirrhosis, nonalcoholic fatty liver disease, and healthy subjects were used as comparator groups. Levels of identified proteins primarily involved in hepatocellular function were decreased in patients with AH, which included hepatokines, clotting factors, complement cascade components, and hepatocyte growth activators. A protein signature of AH disease severity was identified, including thrombin, hepatocyte growth factor α, clusterin, human serum factor H-related protein, and kallistatin, which exhibited large abundance shifts between severe and nonsevere AH. The combination of thrombin and hepatocyte growth factor α discriminated between severe and nonsevere AH with high sensitivity and specificity. These findings were correlated with the liver expression of genes encoding secreted proteins in a similar cohort, finding a highly consistent plasma protein signature reflecting HNF4A and HNF1A functions. This unbiased proteomic-transcriptome analysis identified plasma protein signatures and pathways associated with disease severity, reflecting HNF4A/1A activity useful for diagnostic assessment in AH.


Assuntos
Carcinoma Hepatocelular , Hepatite Alcoólica , Neoplasias Hepáticas , Humanos , Transcriptoma , Fator de Crescimento de Hepatócito/genética , Proteômica , Trombina/metabolismo , Hepatite Alcoólica/diagnóstico , Proteínas/genética , Biomarcadores
9.
Am J Pathol ; 192(7): 1066-1082, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490715

RESUMO

Alcohol-associated liver disease is a global health care burden, with alcohol-associated cirrhosis (AC) and alcohol-associated hepatitis (AH) being two clinical manifestations with poor prognosis. The limited efficacy of standard of care for AC and AH highlights a need for therapeutic targets and strategies. The current study aimed to address this need through the identification of hepatic proteome and phosphoproteome signatures of AC and AH. Proteomic and phosphoproteomic analyses were conducted on explant liver tissue (test cohort) and liver biopsies (validation cohort) from patients with AH. Changes in protein expression across AH severity and similarities and differences in AH and AC hepatic proteome were analyzed. Significant alterations in multiple proteins involved in various biological processes were observed in both AC and AH, including elevated expression of transcription factors involved in fibrogenesis (eg, Yes1-associated transcriptional regulator). Another finding was elevated levels of hepatic albumin (ALBU) concomitant with diminished ALBU phosphorylation, which may prevent ALBU release, leading to hypoalbuminemia. Furthermore, altered expression of proteins related to neutrophil function and chemotaxis, including elevated myeloperoxidase, cathelicidin antimicrobial peptide, complement C3, and complement C5 were observed in early AH, which declined at later stages. Finally, a loss in expression of mitochondria proteins, including enzymes responsible for the synthesis of cardiolipin was observed. The current study identified hepatic protein signatures of AC and AH as well as AH severity, which may facilitate the development of therapeutic strategies.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Hepatite Alcoólica/patologia , Humanos , Cirrose Hepática Alcoólica/complicações , Hepatopatias Alcoólicas/patologia , Fosfoproteínas , Proteoma , Proteômica
10.
J Virol ; 95(17): e0061221, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132577

RESUMO

Cell-free and cell-to-cell spread of herpesviruses involves a core fusion apparatus comprised of the fusion protein glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL/gO and gH/gL/pUL128-131 facilitate spread in different cell types. The gO and pUL128-131 components bind distinct receptors, but how the gH/gL portions of the complexes functionally compare is not understood. We previously characterized a panel of gL mutants by transient expression and showed that many were impaired for gH/gL-gB-dependent cell-cell fusion but were still able to form gH/gL/pUL128-131 and induce receptor interference. Here, the gL mutants were engineered into the HCMV BAC clones TB40/e-BAC4 (TB), TR, and Merlin (ME), which differ in their utilization of the two complexes for entry and spread. Several of the gL mutations disproportionately impacted gH/gL/gO-dependent entry and spread over gH/gL/pUL128-131 processes. The effects of some mutants could be explained by impaired gH/gL/gO assembly, but other mutants impacted gH/gL/gO function. Soluble gH/gL/gO containing the L201 mutant failed to block HCMV infection despite unimpaired binding to PDGFRα, indicating the existence of other important gH/gL/gO receptors. Another mutant (L139) enhanced the gH/gL/gO-dependent cell-free spread of TR, suggesting a "hyperactive" gH/gL/gO. Recently published crystallography and cryo-electron microscopy studies suggest structural conservation of the gH/gL underlying gH/gL/gO and gH/gL/pUL128-131. However, our data suggest important differences in the gH/gL of the two complexes and support a model in which gH/gL/gO can provide an activation signal for gB. IMPORTANCE The endemic betaherpesvirus HCMV circulates in human populations as a complex mixture of genetically distinct variants, establishes lifelong persistent infections, and causes significant disease in neonates and immunocompromised adults. This study capitalizes on our recent characterizations of three genetically distinct HCMV BAC clones to discern the functions of the envelope glycoprotein complexes gH/gL/gO and gH/gL/pUL128-13, which are promising vaccine targets that share the herpesvirus core fusion apparatus component, gH/gL. Mutations in the shared gL subunit disproportionally affected gH/gL/gO, demonstrating mechanistic differences between the two complexes, and may provide a basis for more refined evaluations of neutralizing antibodies.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Mutação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Glicoproteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Internalização do Vírus
11.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321807

RESUMO

It is widely held that clinical isolates of human cytomegalovirus (HCMV) are highly cell associated, and mutations affecting the UL128-131 and RL13 loci that arise in culture lead to the appearance of a cell-free spread phenotype. The bacterial artificial chromosome (BAC) clone Merlin (ME) expresses abundant UL128-131, is RL13 impaired, and produces low infectivity virions in fibroblasts, whereas TB40/e (TB) and TR are low in UL128-131, are RL13 intact, and produce virions of much higher infectivity. Despite these differences, quantification of spread by flow cytometry revealed remarkably similar spread efficiencies in fibroblasts. In epithelial cells, ME spread more efficiently, consistent with robust UL128-131 expression. Strikingly, ME spread far better than did TB or TR in the presence of neutralizing antibodies on both cell types, indicating that ME is not simply deficient at cell-free spread but is particularly efficient at cell-to-cell spread, whereas TB and TR cell-to-cell spread is poor. Sonically disrupted ME-infected cells contained scant infectivity, suggesting that the efficient cell-to-cell spread mechanism of ME depends on features of the intact cells such as junctions or intracellular trafficking processes. Even when UL128-131 was transcriptionally repressed, cell-to-cell spread of ME was still more efficient than that of TB or TR. Moreover, RL13 expression comparably reduced both cell-free and cell-to-cell spread of all three strains, suggesting that it acts at a stage of assembly and/or egress common to both routes of spread. Thus, HCMV strains can be highly specialized for either for cell-free or cell-to-cell spread, and these phenotypes are determined by factors beyond the UL128-131 or RL13 loci.IMPORTANCE Both cell-free and cell-to-cell spread are likely important for the natural biology of HCMV. In culture, strains clearly differ in their capacity for cell-free spread as a result of differences in the quantity and infectivity of extracellular released progeny. However, it has been unclear whether "cell-associated" phenotypes are simply the result of poor cell-free spread or are indicative of particularly efficient cell-to-cell spread mechanisms. By measuring the kinetics of spread at early time points, we were able to show that HCMV strains can be highly specialized to either cell-free or cell-to-cell mechanisms, and this was not strictly linked the efficiency of cell-free spread. Our results provide a conceptual approach to evaluating intervention strategies for their ability to limit cell-free or cell-to-cell spread as independent processes.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas do Envelope Viral/genética , Replicação Viral/genética , Linhagem Celular , Células Cultivadas , Cromossomos Artificiais Bacterianos , Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Células Epiteliais/virologia , Fibroblastos/virologia , Citometria de Fluxo/métodos , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Replicação Viral/fisiologia
12.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996433

RESUMO

Human cytomegalovirus (HCMV) glycoproteins H and L (gH/gL) can be bound by either gO or the UL128 to UL131 proteins (referred to here as UL128-131) to form complexes that facilitate entry and spread, and the complexes formed are important targets of neutralizing antibodies. Strains of HCMV vary considerably in the levels of gH/gL/gO and gH/gL/UL128-131, and this can impact infectivity and cell tropism. In this study, we investigated how natural interstrain variation in the amino acid sequence of gO influences the biology of HCMV. Heterologous gO recombinants were constructed in which 6 of the 8 alleles or genotypes (GT) of gO were analyzed in the backgrounds of strains TR and Merlin (ME). The levels of gH/gL complexes were not affected, but there were impacts on entry, spread, and neutralization by anti-gH antibodies. AD169 (AD) gO (GT1a) [referred to here as ADgO(GT1a)] drastically reduced cell-free infectivity of both strains on fibroblasts and epithelial cells. PHgO(GT2a) increased cell-free infectivity of TR in both cell types, but spread in fibroblasts was impaired. In contrast, spread of ME in both cell types was enhanced by Towne (TN) gO (GT4), despite similar cell-free infectivity. TR expressing TNgO(GT4) was resistant to neutralization by anti-gH antibodies AP86 and 14-4b, whereas ADgO(GT1a) conferred resistance to 14-4b but enhanced neutralization by AP86. Conversely, ME expressing ADgO(GT1a) was more resistant to 14-4b. These results suggest that (i) there are mechanistically distinct roles for gH/gL/gO in cell-free and cell-to-cell spread, (ii) gO isoforms can differentially shield the virus from neutralizing antibodies, and (iii) effects of gO polymorphisms are epistatically dependent on other variable loci.IMPORTANCE Advances in HCMV population genetics have greatly outpaced understanding of the links between genetic diversity and phenotypic variation. Moreover, recombination between genotypes may shuffle variable loci into various combinations with unknown outcomes. UL74(gO) is an important determinant of HCMV infectivity and one of the most diverse loci in the viral genome. By analyzing interstrain heterologous UL74(gO) recombinants, we showed that gO diversity can have dramatic impacts on cell-free and cell-to-cell spread as well as on antibody neutralization and that the manifestation of these impacts can be subject to epistatic influences of the global genetic background. These results highlight the potential limitations of laboratory studies of HCMV biology that use single, isolated genotypes or strains.


Assuntos
Anticorpos Neutralizantes/imunologia , Citomegalovirus/genética , Epitopos/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Polimorfismo Genético , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Linhagem Celular , Citomegalovirus/imunologia , Células Epiteliais/virologia , Fibroblastos/virologia , Humanos , Proteínas Recombinantes , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...